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Abstract
Using the character expansion method, we generalize several well-known
integrals over the unitary group to the case where general complex matrices
appear in the integrand. These integrals are of interest in the theory of random
matrices and may also find applications in lattice gauge theory.

PACS numbers: 11.15.Ha, 02.20.Qs

1. Introduction

Physical systems described by non-Hermitian operators have recently attracted a lot of attention
in the literature. Applications range from flux-line pinning in superconductors [1] over
dissipation and scattering in quantum chaos [2] to quantum chromodynamics (QCD) at non-
zero density [3]. In turn, the interest in these applications has stimulated new mathematical
studies of non-Hermitian matrices, in particular, in the field of random matrix theory.

We have been led to consider non-Hermitian matrices in our work on the colour–flavour
transformation [4–6]. This transformation involves an integration over complex matrices Z
without any symmetry requirements. Applying the transformation to lattice QCD [6–8] results
in a complex action that is not amenable to standard Monte Carlo algorithms. A possible way
of trying to resolve this problem is to write Z = HU with H Hermitian and U unitary, and
to perform the integral over U analytically so that only the integration over H has to be done
numerically. This approach leads to the following integral over the unitary group,

I1 =
∫

U(N)

dµ(U) detνU e
1
2 tr(AU+BU †) (1)

where dµ(U) is the Haar measure of U(N), ν is an integer, which without loss of generality
we take to be non-negative, and A,B ∈ Gl(N, C). The above integral is the main focus of this
paper. It is well known for A = B† [9–11] (where it leads to the effective partition function of
QCD in the Leutwyler–Smilga regime [10, 12]), but to the best of our knowledge I1 had not
been computed before for A �= B†. We found that the latter case can be solved rather easily
using the character expansion method put forward by Balantekin [13, 14]. Although the case
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of non-integer ν appears to be beyond this approach, we expect our result to hold in that case
as well. Employing the same method, we could also compute the integral which arises from
the factorization Z = U�V † in the colour–flavour transformed action mentioned above. The
matrices U and V are unitary, while � is diagonal with non-negative entries. The resulting
integral in slightly generalized form is given by

I2 =
∫

U(N)

dµ(U)

∫
U(N)

dµ(V ) detν(UV ) e
1
2 tr(UAV B+CV †DU †) (2)

where A,B,C,D ∈ Gl(N, C). This integral was previously known only for the case of
ν = 0, C = B† and D = A† [10, 15, 16]. We also show that the generalization of I2 to the
case of unequal dimensions of U and V leads to an integral which can be non-zero only if
determinants of U and V are absent from the integrand. We conjecture an expression for the
result in this case.

In section 2, we derive results for I1 and I2. In addition, we discuss I2 with unequal
dimensions of U and V and briefly consider the (trivial) generalization of the Itzykson–Zuber
integral to the case of general complex matrices in the integrand. We also comment on the
applicability of our results to the case of non-invertible matrices. Conclusions are drawn in
section 3.

2. Calculation of the group integrals

Our calculations rely on the formalism of [14] and on several examples worked out in detail
therein. Rather than reproducing the material from that work, we will refer to the relevant
equations in [14] whenever appropriate. Thus, the reader is advised to have a copy of this
reference at hand.

The key observation for the generalization of the results of [14] is that the representation
theories of the groups U(N ) and Gl(N ) are essentially the same. In particular, Weyl’s character
formula

χr(X) = det
(
x

nj +N−j

i

)
�(x1, . . . , xN)

(3)

holds not just for unitary, but also for general linear matrices, cf [17]. Here, r = (n1, . . . , nN)

denotes an irreducible representation of Gl(N ) labelled by non-negative, non-increasing
integers. The xi (i = 1, . . . , N) are the eigenvalues of the matrix X.

2.1. Calculation of I1

Using equation (3.5) of [14], we write

detν(AU) etr AU =
∑

r

α(ν)
r χr (AU) (4)

etr BU † =
∑

r

α(0)
r χr(BU †). (5)

Here, the sums are over all irreducible representations of Gl(N ) labelled by r =
(n1, n2, . . . , nN) as above. The corresponding characters are denoted by χr . For convenience,
we have left out the factor of 1

2 in the exponent of equation (1), which will be reinstated in the
final result. The coefficients in the character expansion are given by

α(ν)
r = det

[
1

(nj − ν + i − j)!

]
(6)
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where i and j run from 1 to N, labelling the rows and columns of the matrix. We thus obtain

Î1 ≡
∫

U(N)

dµ(U) detν(AU) etr(AU+BU †)

=
∑

r

∑
r ′

α(ν)
r α

(0)

r ′

∫
U(N)

dµ(U)χr(AU)χr ′(BU †). (7)

Now, we can write

χr(AU)χr ′(BU †) = A
(r)
ab U

(r)
ba B

(r ′)
cd U

(r ′)∗
cd (8)

where the superscript serves as a reminder that these matrices live in the representations r and
r ′ of Gl(N ), respectively. If we restrict ourselves to unitary matrices, we have corresponding
irreducible representations of the subgroup U(N ) of Gl(N ), and hence, we can use the group
theoretical result∫

U(N)

dµ(U)U
(r)
ba U

(r ′)∗
cd = 1

dr

δrr ′
δbcδad (9)

where dr is the dimension of r, regardless of whether we consider it as a representation of
Gl(N ) or U(N ). It then follows that

Î1 =
∑

r

α(0)
r

dr

α(ν)
r χr(AB). (10)

From equations (3.5), (3.3) and (2.9) of [14], we obtain

α(ν)
r

dr

=
N∏

i=1

(N − i)!

(ki − ν)!
with ki = N + ni − i. (11)

The matrix AB has N eigenvalues which we denote by µ2
1, . . . , µ

2
N . We now apply Weyl’s

formula,

χr(AB) = det
[
µ

2(nj +N−j)

i

]
�(µ2)

(12)

where

�(x) =
N∏

i<j

(xi − xj ) (13)

is the Vandermonde determinant. Inserting this expression, together with equations (6) and
(11), into equation (10) yields

Î1 =
[

N−1∏
n=1

n!

]
1

�(µ2)

∑
r

det

[
1

kj !(kj − N − ν + i)!

]
det

[
µ

2kj

i

]
. (14)

Applying the Binet–Cauchy formula, see equation (B4) of [14], and using the power series
expansion of the Bessel function,

Iλ(2y)

yλ
=

∞∑
k=0

y2k

k!(k + λ)!
(15)

we obtain immediately

Î1 =
[

N−1∏
n=1

n!

]
1

�(µ2)
det

[
µN−i+ν

j Ii−N−ν(2µj)
]
. (16)
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Pulling out the factors of µν
j and rearranging the determinant using In = I−n yields

det
[
µN−i+ν

j Ii−N−ν(2µj)
] = det

ν
2 (AB) det

[
µN−i

j Ii−N−ν(2µj)
]

= det
ν
2 (AB) det

[
µi−1

j Iν+i−1(2µj)
]
. (17)

Finally, we rescale A and B by 1
2 to reinstate the factor of 1

2 in the exponent of equation (1) to
obtain∫

U(N)

dµ(U) detνU e
1
2 tr(AU+BU †) = 2

N(N−1)
2

[
N−1∏
n=1

n!

](
det B

det A

)ν
2 det

[
µ

j−1
i Iν+j−1(µi)

]
�(µ2)

(18)

where, once again, the µ2
i are the eigenvalues of AB.

2.2. Calculation of I2

Note first that in the integrand of I2, the determinants of U and V have to be raised to the same
power, as indicated in equation (2); otherwise, the integrations over the U(1) subgroups of U
and V simply render I2 zero.

Using again equation (3.5) of [14], we have

detν(UAV B) etr UAV B =
∑

r

α(ν)
r χr(AUV B) (19)

etr CV †DU † =
∑

r

α(0)
r χr(CV †DU †) (20)

with α(ν)
r given in equation (6). Thus,

Î2 ≡
∫

U(N)

dµ(U)

∫
U(N)

dµ(V ) detν(UAV B) etr(UAV B+CV †DU †)

=
∑

r

∑
r ′

α(ν)
r α

(0)

r ′

∫
U(N)

dµ(U)

∫
U(N)

dµ(V )χr(UAV B)χr ′(CV †DU †)

=
∑

r

α(ν)
r α(0)

r

dr

∫
U(N)

dµ(U)χr(BUADU †C)

=
∑

r

α(ν)
r α(0)

r

d2
r

χr(AD)χr(BC) (21)

where we have made use of equations (8) and (9). From equation (11) we have

α(ν)
r α(0)

r

d2
r

=
[

N−1∏
n=1

n!

]2
N∏

i=1

1

ki!(ki − ν)!
. (22)

Now denote the eigenvalues of the matrices AD and BC by x2
1, . . . , x

2
N and y2

1, . . . , y
2
N ,

respectively. Using again Weyl’s formula (12), equation (21) thus becomes

Î2 =
[

N−1∏
n=1

n!

]2
1

�(x2)�(y2)

∑
r

N∏
i=1

1

ki!(ki − ν)!
det

[
x

2kj

i

]
det

[
y

2kj

i

]
. (23)

Employing the expansion theorem given in equation (B2) of [14] and noting equation (15)
again, this yields

Î2 =
[

N−1∏
n=1

n!

]2
1

�(x2)�(y2)
det[f (xiyj )] (24)
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with

f (z) = zνI−ν(2z). (25)

Pulling the factors of xν
i and yν

j out of the determinant and using In = I−n, we obtain

Î2 =
[

N−1∏
n=1

n!

]2

det
ν
2 (ABCD)

det[Iν(2xiyj )]

�(x2)�(y2)
. (26)

We finally rescale A,B,C and D by 1/
√

2 to reinstate the factor of 1
2 in the exponent of

equation (2) to obtain∫
U(N)

dµ(U)

∫
U(N)

dµ(V ) detν(UV ) e
1
2 tr(UAV B+CV †DU †)

= 2N(N−1)

[
N−1∏
n=1

n!

]2 (
det(CD)

det(AB)

)ν
2 det[Iν(xiyj )]

�(x2)�(y2)
. (27)

Once again, the x2
i and y2

j are the eigenvalues of AD and BC, respectively.
Let us now consider the case in which U and V have different dimensions, i.e.

I(N,M)

2 =
∫

U(N)

dµ(U)

∫
U(M)

dµ(V ) e
1
2 tr(UAV B+CV †DU †). (28)

In this case, A and C are complex N ×M matrices, and B and D are complex M ×N matrices.
For definiteness, we shall take M < N .

At this point, we have not been able to prove a result for I(N,M)

2 , but we conjecture, based
on explicit calculations for small N and M, as well as on numerical experimentation, that the
result takes the form

I(N,M)

2 = 2M(N−1)

[
N−1∏

n=N−M

n!

][
M−1∏

m=N−M

m!

]
det[IN−M(xiyj )]

�(x2)�(y2)
∏M

i=1(xiyi)N−M
. (29)

Here, x2
i and y2

i (i = 1, . . . ,M) denote the (non-zero) eigenvalues of DA and BC, respectively.
This expression also reduces to the well-known result in the case where C = B† and D = A†,
cf [15, 10, 16].

Note that we have not included any determinant terms in the integrand of I(N,M)
2 . If we

included, say, detν U detη V in the integrand, integrations over the U(1) subgroups of U(N)
and U(M) show immediately that the value of the resulting integral is zero unless, possibly,
ν and η are related by Nν = Mη. We now show that even if this relation holds, the integral
gives zero for any ν �= 0, and hence also for η �= 0. To see this, suppose that ν �= 0, and
let us perform the integral of U over U(N), leaving the integral over U(M) untouched for
the moment. The result could be read off from equation (18) if the matrices AV B and CV †D
were Gl(N) matrices. However, since M < N , these matrices are not of full rank, and therefore
N − M of their eigenvalues are equal to zero. Except on a set of measure zero they have the
same rank, so that a limiting process leads to a finite value of det(CV †D)/ det(AV B), given
by det(V †DC)/ det(V BA). We then need to find the limit of det

[
µ

j−1
i Iν+j−1(µi)

]/
�(µ2)

as µM+1, . . . , µN → 0. In this context, µ2
1, . . . , µ

2
M denote the non-zero eigenvalues of

AV BCV †D. In fact, letting just µN → 0, it is easy to see that the above expression goes to
zero, unless ν = 0, which shows that I(N,M)

2 = 0, unless ν = η = 0.
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2.3. Generalization of the Itzykson–Zuber integral

The integral

I3 =
∫

U(N)

dµ(U) etr(AUBU †) =
[

N−1∏
n=1

n!

]
det[exp(xiyj )]

�(x)�(y)
(30)

was computed in [18] for the case where A and B are Hermitian matrices with real eigenvalues
x1, . . . , xN and y1, . . . , yN , respectively. This is a special case of a more general result due to
Harish-Chandra [19].

Following the calculation of this integral in [14], it is immediately obvious that the only
change in the final result is the replacement of the eigenvalues of the Hermitian matrices A

and B by the eigenvalues of their general complex versions.
Also, including the determinant of U in the integrand (raised to any non-zero power)

would give zero due to the integration over the U(1) subgroup.

2.4. Comment on non-invertible matrices

In deriving the above results, we have assumed that the matrices A,B,C and D are elements
of Gl(N, C). However, the integrals I1 through I3 exist even if the matrices on which they
depend are not of full rank. In this case, we can consider the limit in which one or more of
the eigenvalues of the matrix approach zero. Uniform convergence permits the interchange of
this limit and the integration over the unitary group. A l’Hôpital procedure on the right-hand
side of equation (18), (27) or (30) then leads to a finite (though possibly zero) result.

3. Conclusions

We have derived generalizations of several well-known integrals over the unitary group to
the case where general complex matrices appear in the integrand. These integrals may find
applications in lattice gauge theory but are also of purely mathematical interest, in particular in
the theory of random matrices. As mentioned in the introduction, our motivation for studying
these integrals originated from the complex action problem that arises if the colour–flavour
transformation is applied to lattice QCD. We found that the integral I1 solved this complex
action problem for one quark flavour but unfortunately not for two or more flavours.

Our results were obtained by a straightforward application of Balantekin’s character
expansion method. It would be interesting to investigate the feasibility of other well-known
methods to compute integrals over the unitary group, such as the diffusion equation method,
in the cases we have considered. It should also be possible to generalize the results of the
present paper to integrals over the super-unitary group.
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